Appendix: Bridging Physics and Machine Learning

Ahmad Droobi

The Core Equation

We formalize the integration of physical models with machine learning as:

$$\min_{\theta,\phi} \left\{ \underbrace{\mathbb{E}_{x_t \sim \mathcal{D}} \left[\mathcal{L}_{\text{recon}} \left(x_t, g_{\phi}(z_t) \right) \right]}_{\text{Data Fidelity}} + \lambda_1 \underbrace{\mathbb{E}_{z_t \sim q_{\phi}} \left[\mathcal{L}_{\text{phys}} \left(\frac{dz_t}{dt} - f_{\theta}(z_t, \xi_t) \right) \right]}_{\text{Model Compliance}} + \lambda_2 \underbrace{\mathcal{R}(\theta, \phi)}_{\text{Regularization}} \right\} \tag{1}$$

Subject to the latent state inference (the "bridge"):

$$z_t \sim q_\phi(z_t \mid x_t)$$
 (Encoder)

where ξ_t represents stochastic forcing.

Interpretation

Equation (1) represents a Physics–Informed Variational Autoencoder (PI-VAE). Its aim is not merely to reconstruct data, but to **discover** a low-dimensional, physically plausible latent state z_t of a high-dimensional chaotic system.

- The **Bachelor's Journey** contributes the computational bridge: the encoder q_{ϕ} and decoder g_{ϕ} that map between data and latent variables.
- The Master's Journey contributes the physical model f_{θ} that constrains latent dynamics with differential equations and stochasticity.
- The **Intersection** is the minimization itself, where AI unifies data and physics by solving an inverse problem under uncertainty.

Symbol Glossary

Symbol	Meaning	Journey Connection
$\min_{ heta,\phi}$	Joint optimization over physics and inference parameters.	Bachelor: Optimization in Algorithms, Compilers. Master: Core to Inverse Problems, Data Assimilation.
θ	Parameters of the physics model f_{θ} (governing equations).	Master: Differential Equations, SDEs, Turbulence.
φ	Parameters of the inference/generative model (encoder/decoder).	Bachelor: CPU/GPU, HLL, Frameworks.
x_t	$\begin{array}{c} \text{High-dimensional observation at time} \\ t. \end{array}$	Bachelor: Input Devices, Camera Integration, Sensors.
\mathcal{D}	Distribution of observed data.	Master: Probability & Stochastic Processes.
z_t	Latent state (low-dimensional hidden dynamics).	Master: Reduced-Order Models, Inverse Problems.
ξ_t	Stochastic forcing/noise.	Master: Chaos & Turbulence, SDEs.
$q_{\phi}(z_t \mid x_t)$	Encoder mapping data to latents.	Bridge of Bayesian Inference, Data Assimilation.
$g_\phi(z_t)$	Decoder mapping latents to reconstructed observations.	Bachelor: Deep Learning, GPU Parallelism.
$f_{\theta}(z_t, \xi_t)$	Physics model, e.g. drift in SDE.	Master: Dynamical Systems, Ocean Modeling.
$\frac{dz_t}{dt}$	Time derivative of latent state.	Bachelor/Master: Calculus, Differential Equations.
$\mathcal{L}_{ ext{recon}}$	Reconstruction loss (fit to observed data).	Bachelor: foundations of AI/ML.
$\mathcal{L}_{ ext{phys}}$	Physics loss (residual of governing laws).	Master: Physics-Informed ML.
$\mathcal{R}(heta,\phi)$	Regularization term (Occam's razor).	Master: Sparse Modeling, Numerical Methods.
$\mathbb{E}[\cdot]$	Expectation (average over data or latents).	Master: Probability & Stochastic Processes.
λ_1,λ_2	Trade-off hyperparameters.	Interdisciplinary tuning: physics vs. data vs. simplicity.

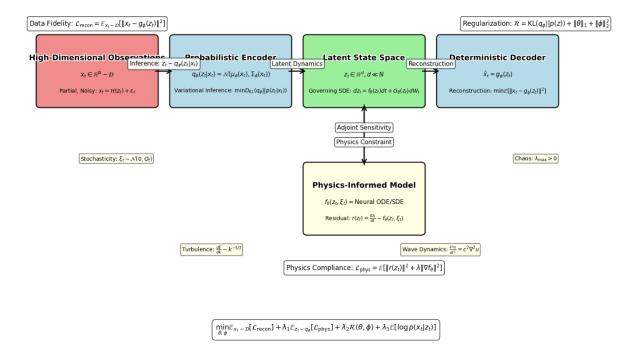


Figure 1: Systematic representation of the Physics-Informed Variational Autoencoder (PI-VAE). The architecture discretizes the general objective in Eq. (1): starting from high-dimensional noisy data x_t , the encoder $q_{\phi}(z_t|x_t)$ infers latent states z_t ; these states evolve under stochastic dynamics $f_{\theta}(z_t, \xi_t)$ constrained by physics; the decoder $g_{\phi}(z_t)$ reconstructs the observations. The training objective minimizes a composite loss combining data fidelity, physics compliance, and regularization, thereby unifying computational learning with mathematical physics.