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The Core Equation

We formalize the integration of physical models with machine learning as:

min
θ,ϕ

Ext∼D
[
Lrecon

(
xt, gϕ(zt)

)]︸ ︷︷ ︸
Data Fidelity

+λ1 Ezt∼qϕ

[
Lphys

(
dzt
dt − fθ(zt, ξt)

)]︸ ︷︷ ︸
Model Compliance

+λ2 R(θ, ϕ)︸ ︷︷ ︸
Regularization

 (1)

Subject to the latent state inference (the “bridge”):

zt ∼ qϕ(zt | xt) (Encoder)

where ξt represents stochastic forcing.

Interpretation

Equation (1) represents a Physics–Informed Variational Autoencoder (PI-VAE). Its aim
is not merely to reconstruct data, but to discover a low-dimensional, physically plausible latent
state zt of a high-dimensional chaotic system.

• The Bachelor’s Journey contributes the computational bridge: the encoder qϕ and
decoder gϕ that map between data and latent variables.

• TheMaster’s Journey contributes the physical model fθ that constrains latent dynamics
with differential equations and stochasticity.

• The Intersection is the minimization itself, where AI unifies data and physics by solving
an inverse problem under uncertainty.
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Symbol Glossary

Symbol Meaning Journey Connection

minθ,ϕ Joint optimization over physics and
inference parameters.

Bachelor: Optimization in
Algorithms, Compilers.
Master: Core to Inverse Problems,
Data Assimilation.

θ Parameters of the physics model fθ
(governing equations).

Master: Differential Equations,
SDEs, Turbulence.

ϕ Parameters of the infer-
ence/generative model (en-
coder/decoder).

Bachelor: CPU/GPU, HLL, Frameworks.

xt High-dimensional observation at time
t.

Bachelor: Input Devices, Camera

Integration, Sensors.

D Distribution of observed data. Master: Probability & Stochastic

Processes.

zt Latent state (low-dimensional hidden
dynamics).

Master: Reduced-Order Models,
Inverse Problems.

ξt Stochastic forcing/noise. Master: Chaos & Turbulence, SDEs.

qϕ(zt | xt) Encoder mapping data to latents. Bridge of Bayesian Inference, Data
Assimilation.

gϕ(zt) Decoder mapping latents to recon-
structed observations.

Bachelor: Deep Learning, GPU

Parallelism.

fθ(zt, ξt) Physics model, e.g. drift in SDE. Master: Dynamical Systems, Ocean

Modeling.

dzt
dt Time derivative of latent state. Bachelor/Master: Calculus,

Differential Equations.

Lrecon Reconstruction loss (fit to observed
data).

Bachelor: foundations of AI/ML.

Lphys Physics loss (residual of governing
laws).

Master: Physics-Informed ML.

R(θ, ϕ) Regularization term (Occam’s razor). Master: Sparse Modeling,
Numerical Methods.

E[·] Expectation (average over data or la-
tents).

Master: Probability & Stochastic

Processes.

λ1, λ2 Trade-off hyperparameters. Interdisciplinary tuning: physics vs.
data vs. simplicity.
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Figure 1: Systematic representation of the Physics-Informed Variational Autoencoder (PI-
VAE). The architecture discretizes the general objective in Eq. (1): starting from high-
dimensional noisy data xt, the encoder qϕ(zt|xt) infers latent states zt; these states evolve
under stochastic dynamics fθ(zt, ξt) constrained by physics; the decoder gϕ(zt) reconstructs
the observations. The training objective minimizes a composite loss combining data fidelity,
physics compliance, and regularization, thereby unifying computational learning with mathe-
matical physics.
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