Appendix: Bridging Physics and Machine Learning
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The Core Equation

We formalize the integration of physical models with machine learning as:
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Subject to the latent state inference (the “bridge”):
2t~ qo(2e | T¢) (Encoder)

where & represents stochastic forcing.

Interpretation

Equation (1) represents a Physics—Informed Variational Autoencoder (PI-VAE). Its aim
is not merely to reconstruct data, but to discover a low-dimensional, physically plausible latent
state z; of a high-dimensional chaotic system.

e The Bachelor’s Journey contributes the computational bridge: the encoder g4 and
decoder gy that map between data and latent variables.

e The Master’s Journey contributes the physical model fy that constrains latent dynamics
with differential equations and stochasticity.

e The Intersection is the minimization itself, where Al unifies data and physics by solving
an inverse problem under uncertainty.



Symbol Glossary

Symbol Meaning Journey Connection
ming 4 Joint optimization over physics and Bachelor: Optimization in
inference parameters. Algorithms, Compilers.
Master: Core to Inverse Problems,
Data Assimilation.
0 Parameters of the physics model fy Master: Differential Equations,
(governing equations). SDEs, Turbulence.
10) Parameters of the infer- Bachelor: CPU/GPU, HLL, Frameworks.
ence/generative model (en-
coder/decoder).
Ty High-dimensional observation at time Bachelor: Input Devices, Camera
t. Integration, Sensors.
D Distribution of observed data. Master: Probability & Stochastic
Processes.
2 Latent state (low-dimensional hidden Master: Reduced-Order Models,
dynamics). Inverse Problems.
& Stochastic forcing/noise. Master: Chaos & Turbulence, SDEs.
962t | 1) Encoder mapping data to latents. Bridge of Bayesian Inference, Data
Assimilation.
9e(2t) Decoder mapping latents to recon- Bachelor: Deep Learning, GPU
structed observations. Parallelism.
fo(zt, &) Physics model, e.g. drift in SDE. Master: Dynamical Systems, Ocean
Modeling.
% Time derivative of latent state. Bachelor/Master: Calculus,
Differential Equations.
Lrecon Reconstruction loss (fit to observed Bachelor: foundations of AI/ML.
data).
Lphys Physics loss (residual of governing Master: Physics-Informed ML.
laws).
RO, ®) Regularization term (Occam’s razor). Master: Sparse Modeling,
Numerical Methods.
E[] Expectation (average over data or la- Master: Probability & Stochastic
tents). Processes.
AL, A2 Trade-off hyperparameters. Interdisciplinary tuning: physics vs.

data vs. simplicity.
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Figure 1: Systematic representation of the Physics-Informed Variational Autoencoder (PI-
VAE). The architecture discretizes the general objective in Eq. (1): starting from high-
dimensional noisy data x;, the encoder g4(z|z¢) infers latent states z;; these states evolve
under stochastic dynamics fy(z, &) constrained by physics; the decoder gg(z;) reconstructs
the observations. The training objective minimizes a composite loss combining data fidelity,
physics compliance, and regularization, thereby unifying computational learning with mathe-
matical physics.



